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General overview 

The prognosis of brain cancer remains poor, especially for patients with 
glioblastoma multiforme (GBM). Besides disease-related problems, the 
toxicity of neurosurgery, radiochemotherapy and maintenance chemotherapy 
is a burden for the patient and the community. However, paradigms for 
treatment are changing. For example, biological treatments and treatments 
based on physics have emerged as promising options for GBM patients. In 
addition, instead of designing treatment protocols based on pathology 
diagnosis and staging, targeted therapies built on the molecular machinery 
of the tumours are emerging, resulting in personalised medicine with 
different toxicity profiles that have fewer side effects. The concept of 
personalised medicine using all treatment modalities on the basis of daily 
experiences is developing strongly. A GBM interacts weakly or strongly 
with the immune system. Hence, the antigenic profile and surface molecules 
of GBM greatly differ in each patient. Specifically targeting these surface 
molecules forms a second dimension of personalised medicine. More 
knowledge is generated about the GBM tumour microenvironment and the 
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interaction of the immune system with GBM. Elucidating how the body’s 
immune system fails to control the tumour and how interventions can be 
designed to re-establish immune control results in a third dimension of 
personalised medicine. 

Furthermore, the immune system controls GBM, at best, in a situation 
of minimal residual disease. Accordingly, for each patient, an optimal 
treatment combination, including immunotherapeutic approaches, should 
be developed, resulting in a fourth dimension of personalised medicine. The 
response to treatment and the eventual necessary adaptation of the treatment 
represents the fifth dimension of personalised medicine. Ultimately, the 
installation of a permanent protective immune memory against GBM forms 
the equivalent of a roof and leads towards a permanent cure. Immunisation 
against GBM might be triggered by personalised combinations of 
anticancer treatment pillars, but immunisation against GBM might be 
strengthened by active specific immunotherapy aimed so as to directly 
stimulate the body’s own immune system against the disease. The 
application of different individualised treatment concepts should be 
redefined regularly because the tumour itself and the patient are highly 
dynamic. Complementary medical interventions support and facilitate 
direct antitumor treatment combinations, immune interventions and 
modulations to obtain and maintain maximal control over tumour growth. 
It will be a challenge for medical doctors, responsible authorities and 
insurance companies to implement the complex concept of personalised 
medicine. Yet, personalised medicine seems the only way towards a 
possible GBM cure. 

Glioblastoma multiforme 

Glioblastoma multiforme (GBM) is the most malignant form of glioma. 
According to the World Health Organisation (WHO), the tumour always 
qualifies as a grade IV malignancy. In the classification of 2016, three sub-
entities were categorised: 1) secondary GBM coming out of low-grade 
gliomas which are mostly Isocitrate Dehydrogenase (IDH) mutated; 2) 
primary GBM which are mostly IDH wild type; 3) diffuse midline gliomas 
that harbour a histone H3K27M mutation [1]. In-depth molecular analyses, 
however, have categorised GBM into 6 different tumour entities with 
clearly different clinical profiles and molecular biology [2]. There is no 
known cause for the manifestation of GBM. However, a significant 
association has been found between increasing age, increasing 
immunosuppression and the incidence of GBM, suggesting that ageing 
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progressively suppresses normal immunosurveillance, thereby contributing 
to GBM cell initiation and/or outgrowth [3]. Although most GBMs are 
induced de novo, cancer predisposition syndromes include increased risk 
for GBM formation [4], [5], [6]. Irradiation is certainly a cause for GBM 
formation, and the prognosis of a second malignant GBM is extremely poor 
[7]. Viral infections like cytomegalovirus (CMV) (variants) have been 
mentioned as potential triggers for GBM formation, and some therapeutic 
approaches have been developed targeting CMV [8]. Finally, long-term 
exposure to higher doses of non-ionising irradiation has been associated 
with the formation of GBM, although the causality has yet to be proven [9]. 
The risk for GBM formation seems decreased in patients with atopic 
diseases [4].  

GBM is the most common primary brain malignancy in adults. 
Nevertheless, its incidence is low, with about 4 new diagnoses per 100,000 
adults per year [10]. Hence, GBM is considered an orphan disease, which 
makes the development of new treatments more challenging. Drug 
developmental programmes for orphan diseases are facilitated by regulatory 
authorities. Despite the low incidence of GBM, the severity of the 
consequences for patients and the community are extremely high. First, the 
acute appearance of symptoms has the potential to cause disabilities and 
affect the quality of life, not only for the patient but also for the surrounding 
family and friends. 

Additionally, the chances for long-term overall survival (OS) are 
virtually absent [11], [12]. With the current standard therapies, the median 
OS of GBM is less than 15 months, and there is almost no chance of long-
term survival [13]. This hard reality is reflected in two studies, 
demonstrating that, compared to other cancer entities, the highest number 
of years of life lost due to cancer is caused by GBM [14], [15]. This is due 
to the combination of relatively young age at the time of diagnosis and poor 
OS. The low investment in GBM research further contributes to the lack of 
improvement over the last decades. Still, the prognosis varies, not only 
based on the molecular subgrouping [2], but also the clinical characteristics 
of the patients. Counselling on the prognosis for patients should be based 
on recursive partitioning analysis (RPA), in which age, extent of resection, 
grading of tumour, Karnofsky performance index, Mini-mental state and 
quality of radiotherapy are taken into consideration [16], [17], [18].  

GBM is a systemic brain disease. Its biology is very complex [19]. The 
tumour consists of residing glioma cancer stem cells, bulky growing tumour 
cells and infiltrating tumour cells. It contains several subclones with relative 
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variable presence during the disease. This is reflected in the so-called 
epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial 
transition (TEM) [20]. The fast growth and lack of oxygen supply induce 
deficient neovascularisation [21]. The changed metabolism, with fast 
glycolysis outside the mitochondrial respiration, increases the oxidative 
burden in the tumour microenvironment (TME) [22]. The TME is further 
complicated by a high presence of microglia, tumour associated 
macrophages (TAM), myeloid-derived suppressor cells (MDSC) and 
regulatory T cells (Treg) [23]. The combined tumour cell-bound and tumour 
cell-secreted immunosuppressive factors, together with the presence of 
immune-suppressive cells, contribute to a strong local immunosuppressive 
TME and even to systemic immunosuppression. Reflecting this biological 
reality in the light of the paradigm of tumour immune surveillance, 
consisting of elimination–equilibrium–escape [24], [25], [26], it becomes 
obvious that there is just a vanishingly small chance for the spontaneous 
development of anti-tumour immune responses in the course of the disease; 
this leads to the failure of the immune system to control tumour 
development and growth resulting in an almost immediate tumour escape. 
That is likely the reason why the monotherapy with checkpoint blockers 
currently being investigated in many clinical trials fails, even if the target is 
present on some tumour cells [27].  

The procedures for accurate diagnosis in the context of GBM suspicion 
are quite simple. In the acute situation, a computed tomography (CT) scan 
can be performed in the short term for the diagnosis of urgent clinical 
problems that require immediate surgical or medical treatment. The 
standard diagnostic procedure is magnetic resonance imaging (MRI). 
Standard imaging protocols have only been developed recently throughout 
the radiology community (https://www.awmf.org/leitlinien/detail/ll/025-
022.html). The MRI investigation can be further elaborated with perfusion 
MRI, diffusion MRI and/or spectroscopy. Functional MRI brain imaging 
may be required for neurosurgery planning. Nuclear medicine imaging is 
very rarely needed during diagnosis.  

Treatment elements in the therapy for GBM:  
five pillars under one roof 

In the last 100 years, the treatment of patients with GBM has greatly 
changed. Incredible developments were realised in all disciplines involved 
in the treatment. During the diagnostic phase, technical evolutions have 
been implemented systematically over time, resulting in improvements to 

https://www.awmf.org/leitlinien/detail/ll/025-022.html
https://www.awmf.org/leitlinien/detail/ll/025-022.html
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local treatments, precise staging, accurate treatment planning, and follow 
up. Both MRI technologies and nuclear medicine imaging technologies give 
information on the anatomical structures of cancer lesions in relation to the 
healthy environment [28], [29]. Modern imaging technologies, like advanced 
MRI technologies, Single Photon Emission Computed Tomography and 
Positron Emission Tomography technologies, provide additional insights 
into the molecular biology and behaviour of cancer lesions.  

Surgery 

The first approach for the treatment of GBM is surgery. Oncologic 
neurosurgery has two main goals to fulfil. The first goal is to remove as 
much tumour tissue as safely possible and, also, to relieve space occupied 
by the expanding tumour. The extent of resection remains a major 
prognostic factor [17], [30]. Therefore, imaging techniques for use during 
neurosurgery have been developed, such as intraoperative MRI, and 5-
Amino-Levulinic Acid (5-ALA) technology. The evolution of modern 
neurosurgical technologies has been partly supported by accompanying 
evolutions in electrophysiology, anaesthesiology support and intensive care 
medicine, as well as in nursing and supportive care. The second goal of 
surgery is to obtain tumour tissue for the appropriate diagnosis. Modern 
tumour diagnostics are aimed such as to categorise patients into correct 
diagnostic (sub)groups so that appropriate and risk-adapted treatment 
protocols can be initiated after surgery. The diagnostic procedures, which 
were almost exclusively by classical immunohistochemistry, have 
expanded nowadays with molecular biological test systems, including 
genetic and epigenetic tests. This allows a much more refined disease 
categorisation [2]. Since treatment is becoming more dependent on 
advanced molecular diagnostics, clinicians hold a plea for appropriate 
tumour tissue handling as a critical step during surgery [31]. Additionally, 
an accurate diagnosis of germline mutations at the time of tumour 
diagnostics greatly influences further treatment planning [5], [6]. 

Radiotherapy 

Radiotherapy as local antitumour treatment has existed for more than 50 
years [32]. Safety remained one of the most important issues in the 
development of radiotherapy over the years. Special value is put on the 
dosing, fraction and field of irradiation [33]. Attempts using hypofractionation 
and hyperfractionation usually did not result in major changes regarding the 
ultimate outcome of the patients [34], although hypofractionation is now 
recommended for elderly patients [35] and might induce some new 
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treatment avenues for younger patients [36]. The design of the most 
appropriate field was a great challenge, and technologies like Intensity-
Modulated radiotherapy have been entered into clinical application [37]. 
Another approach to receive local radiotherapy was the conjugation of 
radioisotopes to antibodies or metabolites [38]. By changing photon 
radiotherapy towards proton radiotherapy, the field demarcation improved 
a great deal [39], [40]. However, other challenges appeared; for example, 
more stringent nursing care around the treatment sessions is usually needed. 
Additionally, it is not yet proven that proton therapy results in an improved 
OS as compared to photon therapy. However, it has been proven for distinct 
cancer entities that the sharp field demarcation allows a higher tumour 
dosage without affecting the important healthy tissues just beside the target 
field [41]. The toxicity of radiotherapy has remained an issue over the years, 
especially considering neural toxicity, endocrine toxicity and the induction 
of secondary malignancies [42]. 

Chemotherapy 

Chemotherapy is the third pillar of anticancer treatment strategies. 
Although developed shortly after surgery and radiotherapy, a huge 
progression has been realised over time. Chemotherapy may even cure 
cancer patients, which is especially true for hematologic malignancies [43]. 
Different types of anticancer drugs have been developed over time. Amongst 
those are alkylating agents, antimetabolites, antitumour antibiotics, mitotic 
inhibitors, topoisomerase inhibitors and steroids. The specialisation of 
medical teams and nursing teams, and the development of supportive 
treatments to conduct chemotherapy allowed the evolution of combined 
chemotherapy schedules. These combined intense chemotherapy treatment 
protocols contributed to and increased the cancer cure rate, especially in 
children. In the context of GBM, routes of administration were adapted 
towards application into the cerebrospinal fluid to reach the intracranial 
space behind the blood-brain barrier (BBB). Intra-arterial chemotherapy 
allows the administration of higher doses to achieve better anticancer effects 
without increasing toxicity. The downside of the intense chemotherapeutic 
protocols is multiple side effects, both short-term (like bone marrow 
suppression, vomiting) and long-term (renal dysfunction, audiology, neural 
toxicity, second malignancy). For patients with GBM, surgery, subsequent 
radiochemotherapy using Temozolomide (TMZ) and radiation, followed by 
maintenance chemotherapy with Temozolomide (TMZ) for 6 cycles 
became the worldwide standard of care in the last 15 years [11], [12]. This 
combined treatment strategy also forms the backbone of further 
developments. TMZ during radiochemotherapy functions at multiple levels 



Chapter 7 
 

132 

and the effects of TMZ on tumour cells are rather complex [44]. TMZ has 
been described to have a radiosensitising effect [45] and acts as an 
alkylating agent resulting in direct anticancer activity [46]. Furthermore, 
TMZ has been shown to downregulate PD-L1 expression on tumour cells 
[47]. At the same time, TMZ induces hypermutation [48]. Finally, TMZ 
also has an effect on the TME by reducing the load of Treg [49]. The latter, 
together with a moderate T cell depletion in general, has been considered as 
a favourable starting point from which to initiate dendritic cell (DC) 
vaccination therapy as part of the primary treatment of GBM [50], [51], [52].  

Targeted (immuno)therapy 

The lack of further improvement in the cure rate – despite the modern 
advances in surgery, radiotherapy and chemotherapy – the increasing focus 
on the quality of life of longer-term surviving patients and the increased 
knowledge in molecular biology of tumours – plus the discovery of 
druggable pathways –all led to the creation of a fourth major pillar in 
anticancer treatment strategies, namely, targeted cancer therapy or precision 
medicine. This approach has been developed within the last 30 years. 
Targeted therapies contain many types of treatment approaches, 
deliberately designed to act on specific targets that are associated with 
cancer, and hence causing (at first glance) fewer side effects compared to 
classical chemotherapy [53], [54], [55], [56], [57], [58]. In general, targeted 
therapies include receptor-targeted therapies [38], gene expression 
modulators [59], apoptosis inducers [60], angiogenesis inhibitors [61], 
toxin delivery molecules [38], nanocarriers [62], [63], [64] and even several 
forms of immunotherapeutics. Examples of the last-named are antibodies 
against particular antigens inducing antibody-dependent, cell-mediated or 
complement-dependent cytotoxicity [65], [66], checkpoint inhibitors that 
unblock eventually existing anticancer effector immune cells [67], [68], 
[69], [70], Chimeric Antigen Receptor (CAR) T cells [71], [72], [73] or T 
cell receptor (TCR)-transduced T cells [74]. A critical review pointed to the 
overall disappointing results of targeted therapies for GBM [75].  

However, the implementation of targeted therapies caused a major 
paradigm shift in oncology. For the first time, the GBM patient did not adapt 
to a certain treatment protocol anymore, but treatment became designed for 
the GBM patient. As already mentioned, personalised medicine is the new 
term to cover this concept. The big scientific challenge in the implementation 
of personalised medicine is a study design to prove the added value of 
personalised medicine versus classical protocol oncology using placebo-
controlled, double-blind randomised clinical trials that result in evidence-
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based medicine. In addition, clinical trials with combinations of targeted 
drugs have been hindered. First, there are economic reasons, as most drugs 
are developed by pharmaceutical companies. Next, the particular 
methodology in clinical trial research is focused far too much on a step-by-
step approach. Even in modern clinical trial designs, immediate testing of 
combinational strategies is rarely performed. Hence, the debate is ongoing 
on how to cure brain cancer [76].  

Biologic/physics therapy 

Although GBM is a systemic brain disease, first attempts at medical care 
involved local treatment approaches. Because surgery could not be curative 
for GBM, local irradiation with broad margins was implemented into 
standard therapy first. Next, chemotherapy became part of standard 
treatment, significantly shifting the OS curve in the right direction. 
Nevertheless, chemotherapy has never provided any chance for long-term 
survival [11], [12]. Recently, the use of electromagnetic waves outside the 
spectrum of ionising irradiation has been implemented as an anticancer 
treatment strategy. The tumour-treating field (TTF, Optune), administering 
200 kHz waves with an electric field of 1 to 3 V/cm over the entire brain 
was implemented, and the efficacy has been shown in a large phase III 
randomised clinical trial [77]. The aim of this technology is to disrupt the 
mitotic spindle and the membrane integrity of the tumour cell [78], [79]. 
Although the working mechanism of TMZ depends on cell division, TTF in 
combination with TMZ as maintenance therapy after radiochemotherapy 
has been implemented into daily routine. The continuous need for cell cycle 
arrest requires the use of TTF during at least 85% of the time, which raises 
concerns on the quality of life during treatment [80]. It is worthy of note 
that recent insights have pointed to the efficacy of TTF as an inducer of 
immunogenic cell death (ICD). Hence, its additive effect on tumour control 
is neutralised by a dexamethasone dose > 4 mg per day [81].  

While TTFs have been applied to the entire brain over long periods of 
time, other technologies use electromagnetic waves at a higher frequency 
(13.56 MHz) and intensity (2 to 2.5 V/cm) focusing just on the tumour area 
for a shorter period (about one hour). The tumour cell selectivity of modulated 
electro-hyperthermia (mEHT) is linked to the increased fermentation pathway 
of glycolysis (Warburg effect), the changed ion concentration and the 
permittivity of tumours compared to adjacent normal tissues [82]. Clinical 
efficacy in patients with relapsed GBM has been published [83], [84]. 
Besides non-thermal effects like membrane disruption and the induction of 
mitotic catastrophe, mEHT causes dielectric thermal effects [85]. It improves 
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the immunological TME for subsequent DC therapy [86]. It is the experience 
of the authors to use mEHT at moderate intensity, thereby inducing ICD 
without inducing necrosis and inflammation [87], and thus avoiding the 
toxicities mentioned in earlier studies using much higher doses [88].  

Another area for innovative treatments in the field of GBM is the use of 
oncolytic viruses (OVs) [89], [90], [91], [92]. Several viruses are under 
investigation: non-engineered or naturally oncolytic agents from which the 
host is non-human (reovirus, Newcastle Disease Virus [NDV], parvovirus) 
or attenuated strains of human viruses (mumps, polio, vaccinia), human 
pathogenic strains engineered to be onco-specific (adenovirus, herpes 
simplex virus) and engineered-armed viruses that produce cytokines like 
GM-CSF or IL-12. All these viruses have two major working mechanisms 
in common, albeit with different relative weights: they aim to kill tumour 
cells directly and they aim to induce an anticancer immune response. The 
mechanism for the onco-specificity of the viruses is different for each virus 
and is based on the lack of type I interferon production, tumour-specific 
entry receptors and/or pathways or tumour cell metabolic rate. Of particular 
importance, some viruses like NDV have the capacity to induce ICD in the 
context of GBM [93]. Combinations of OVs together with Checkpoint 
inhibitors are the focus of current research [94], [95].  

Towards active specific immunisation 

All the methods described above as the five pillars of anticancer therapy 
are directed against the tumour. A cure, however, is only possible through 
the generation of an active intrinsic immune protection, kept going long-
term by the induction of an anticancer immune memory. All five of these 
treatment elements contribute to the generation of an active antitumour 
immunisation and can even trigger the body’s own immune system to build 
up active immune protection. Simultaneous maximal neurosurgical debulking 
of the tumour removes a major source of immunosuppressive mechanisms, 
and hence changes the balance in favour of immunotherapeutic approaches, 
which are best performed with minimal residual disease [18], [96], [97]. A 
lot of research in the field of radiotherapy is now focusing on the induction 
of ICD, although for GBM there is not much data available, yet [98]. The 
immunologic effects of TMZ chemotherapy have already been mentioned 
[47], [48], [49]. HDAC inhibitors can exert divergent effects on tumour-
host interactions [99], [100], [101]. The role of targeted immunotherapies 
like antibodies and target-specific T cells is obvious [65], [66], [67], [68], 
[69], [70], [71], [72], [73], [74]. The role of the immune system as part of 
the working mechanism of TTF has been recently suggested [81]. Moderate 
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modulated electro-hyperthermia has been demonstrated to build up an 
active immunisation against the tumour via ICD [82], [86]. Finally, the role 
of the immune system in the working mechanism of OVs has been 
previously described in detail in the former paragraph of this chapter [89], 
[90], [91], [92], [93], [94], [95]. Additionally, active vaccination 
technologies aiming to stimulate the immune system against tumour 
antigens directly might be necessary to help active specific immunisation 
against cancer, to reach ultimate anticancer immunisation, for long-term 
protection and for a cure. Finally, immunomodulatory strategies might be 
needed to reach this goal. Hence, within the context of the previously used 
metaphor, active specific immunotherapy to yield active specific anticancer 
immunisation may be considered as the roof, built up and supported by the 
five anticancer treatment pillars (figure 1). Several meta-analyses have 
described a significantly increased percentage of long-term surviving GBM 
patients when treated with active specific vaccination treatments [102], 
[103], [104], [105].  

 

Figure 1. Combined treatment approaches. Treatment modalities in the vertical 
axis are targeted against glioblastoma multiforme (GBM). These treatment 
modalities can have indirect effects on active specific immunisation against GBM. 
The “active specific immunotherapy” treatment modality stimulates the immune 
system of the body against GBM. An integrated approach of all treatment modalities 
can ultimately result in a cure for GBM.  
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Figure 2. The ideal scenario for the combining of anticancer treatment 
strategies with immunotherapy strategies. This is a theoretical representation of 
the evolution of GBM tumour volume during time. Without diagnosis, a GBM 
tumour grows to a deadly tumour volume (1). However, at a certain point, the 
tumour is diagnosed, and the treatments to reduce the tumour volume and to keep a 
low tumour volume for as long as possible are initiated (2). However, early or late, 
the tumour might regrow (3). The immune system aims to reprogramme the body to 
fight cancer and slow down its growth. (4). When immunotherapy is started late, the 
gain in overall survival is less than when immunotherapy begins at a minimal 
residual tumour volume (5). The immune system might be able to stabilise the 
tumour volume at a certain level (6). When immunotherapy is started early during 
treatment, lower levels of tumour-mediated immune suppressive effects might result 
in better control of the tumour volume evolution (7a, 7b). When, however, the 
tumour is progressive, one can again use anticancer strategies to reduce the tumour 
volume (8) and maintain the slower tumour evolution due to the immune memory 
(9). 

All treatments should be integrated together to create protection against 
cancer progression. The efficacy of active specific immunotherapy on long-
term OS is strongest when placed early in treatment, as mentioned 
previously [106]. We have elaborated on this concept for GBM, including 
the multimodality of most anticancer treatments (figure 2). By introducing 
anticancer treatment strategies, one aims to reduce tumour volume. 
However, the fear is that a relapse might occur. Similarly to the figure 
published by Shore et al. [106], the gain in OS with vaccination late in the 
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treatment, at a stage of relapse or progress, is less than when 
immunotherapy is placed early in treatment when the tumour load is 
minimal. Moreover, the chance to get a stable tumour status or the chance 
to slow down or even reduce further residual tumour volume increases when 
immunotherapy is introduced at minimal residual disease. Finally, if the 
tumour progresses again, direct anticancer strategies can be used again, 
thereby maintaining the anticancer immune response. In this way, cancer 
becomes a chronic disease kept under control by the immune system and, 
eventually, a non-immunosuppressive intermittent anti-cancer treatment. 

Combination treatment for GBM: from protocol medicine 
towards personalised medicine 

Personalisation at the level of the molecular biology 

Over the last ten years, insights into the molecular biology of GBM have 
increased tremendously. It has clearly been shown that O6-methylguanine-
DNA methyltransferase (MGMT) promoter-unmethylated GBMs, resulting 
in high MGMT metabolic activity, are much less sensitive to the tumour 
killing activity of TMZ [107]. Although the standard of care still includes 
TMZ as treatment, a lot of clinical trial protocols are stratified on the 
MGMT methylation status of the patient (for example, see reference [108]). 
The use of patient’s MGMT status was the first introduction of personalised 
medicine within the domain of neuro-oncology.  

Over time, many other druggable targets were discovered [53], [54]. 
These druggable targets included the overexpression and/or mutation of 
growth factor receptors and different types of signalling pathways. Many 
targeting drugs have been tested in the context of target-expressing GBM, 
yet there has been no breakthrough [55], [56], [57], [58]. The existence of 
the BBB, which hampers adequate bioavailability, remains one particular 
challenge. Another problem is the lack of the uniform expression of the 
target in all tumour cell clones. Hence, upon treatment, non-sensitive clones 
of tumour cells selectively expand [109]. Only recently has there been an 
increase in the number of strategies using more than one drug, and an 
increase in the number of drugs that can pass the BBB [110].  

Personalisation at the level of surface antigens 

Cell surface molecules have been used as targets via the immune system 
[38]. Along the same lines, CAR-T cells have been created against targets 
like IL-13Ra, EGFRvIII or GD2 [71], [72], [73]. The particular hurdle for 
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these approaches, again, is the lack of the uniform expression of the target 
on all tumour cells, thereby allowing clonal selection. Finally, checkpoint 
blockers like anti-PD-(L)1 have been studied in the context of GBM [68], 
[69], [70]. Although most studies did not result in any effect, a potential 
benefit has been demonstrated for hypermutant GBM resulting from 
germline biallelic mismatch repair deficiency. The chance for a 
spontaneously induced anticancer immune response in these tumours is 
much higher due to the high mutational burden resulting in increased 
antigenicity [111]. Additionally, the influence of TMZ treatment on the 
immune system should be considered [44], [47].  

In the domain of active vaccination strategies, specific antigens have 
been used in the vaccine as a strategy of personalised medicine. The most 
elaborated example is the EGFRvIII-targeted vaccine [108]. It is worthy of 
note that targeting one single target moiety induced a tumour escape 
mechanism via downregulation of the target antigen [112]. This finding 
supports the idea that the use of multiple antigens in one vaccine might be 
advantageous. On this basis, mixtures of commonly spread glioma-
associated antigens have been used [113], [114], [115]. Other authors have 
used patient-derived whole tumour lysate [52], [116], [117], [118], [119], 
[120], [121], [122], [123], acid-eluted peptides [124] or mRNA [125] from 
tumour cells as a source of antigen for loading DCs, thereby creating an 
entirely personalised vaccine. A further step in the personalisation of cancer 
vaccines is the creation of individualised mutanome vaccines using RNA-
based poly-neo-epitope approaches [126] and HLA ligandome tumour 
antigen-based vaccines [127], though their use in GBM has not yet been 
published.  

Given the changing subclone profile of GBM in response to ongoing 
anticancer treatments, one should consider that the antigenic profile at the 
time of vaccination is not like the antigenic profile at the time of diagnostic 
tissue sampling. We, therefore, have been looking for strategies to obtain 
contemporary tumour antigens at the time of DC vaccination. GBM EVs 
have clearly been demonstrated and are the focus of study as the serially 
accessible biomarkers for diagnosis and treatment response [128]. Based on 
their scale, EVs are subdivided into exosomes, extracellular microvesicles 
and apoptotic bodies [129]. With the exception of exosomes, EVs include 
MHC molecules from tumour cell membranes, including the presented 
peptides. We obtained evidence that several days of ICD induction with 
injections of NDV and treatments with mEHT could induce an increase of 
antigenic extracellular microvesicles in the blood, which can then be used 
for DC loading [130]. By doing so, the antigenic profile of the vaccine  
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Figure 3. The production process behind IO-VAC®. Adherent monocytes are 
taken out of peripheral blood and cultured for 5 days in the presence of IL-4 and 
GM-CSF towards immature dendritic cells (1). During these 5 days, daily injections 
of Newcastle Disease Virus (NDV) (2) and daily treatments with modulated electro-
hyperthermia (mEHT) (3) are given. They are loaded with antigens derived from 
tumour lysate (4), obtained from resected tumour tissue (5). They are also loaded 
with NDV/mEHT-induced serum-derived antigenic extracellular microvesicles and 
apoptotic bodies obtained from the serum (6). Loaded dendritic cells (DCs) are 
further matured with IL-1-beta, IL-6 and TNF-α (7) and with NDV (8) as described 
[87]. IO-VAC® is injected with the aim to stimulate the T cells in the lymph nodes 
that recognise the antigens (9) and other T cells that recognise NDV (10). The former 
T cells must act against the tumour cells (11), and the latter T cells must react against 
virally infected cells; hence, the tumour cells (12). Finally, as the tumour possesses 
immune suppressive mechanisms, personalised blockage of these should be added 
into the immunotherapy concept. For example, the interaction of PD-L1 on tumour 
cells with PD-1 on activated T cells can be blocked with anti-PD-(L)1 antibodies 
(13).  

GBM: glioblastoma multiforme; ICD: immunogenic cell death; iDC: immature 
dendritic cells; mDC: mature dendritic cells; mEHT: modulated electro-hyperthermia; 
PD-L1: programmed death ligand 1. 

eventually comes to include tumour antigens of existing (residual) tumour 
cells at the time of ICD induction (figure 3). The vaccine can stimulate T 
cells against tumour antigens. To maximise the potency of the vaccine, 
NDV is used as part of the maturation cocktail acting as a single strand RNA 
virus in synergy with a cytokine cocktail consisting of IL-1-beta, IL-6 and 
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TNF-α for DC maturation. At the same time, NDV antigens are included in 
the antigenic profile, thereby obtaining the potency to stimulate NDV-
reacting T cells that target NDV-infected tumour cells. This complex, 
personalised and potent vaccine, called IO-VAC®, is an approved advanced 
therapy medicinal product in Germany (DE-NW-04-GMP-2015-0030). 
Experiences using this vaccine for GBM patients have been published 
previously [87]. 

Personalisation at the level of tumour-host interaction 

The passive or active immunotherapeutic approaches described above 
are explicit examples of personalised medicine that affect tumour-host 
interactions. The effect of highly personalised DC-based vaccines on the 
prolongation of OS in patients with GBM has been demonstrated in meta-
analyses and extensive reviews [102], [103], [104], [105]. However, as of 
today, no single placebo-controlled double-blind randomised clinical trial 
has proven this outcome, although the initial data are quite encouraging 
[131]. The lack of these types of trials lies in the combination of several 
hurdles that affect trial design: the disease rarity, the heterogeneity of the 
disease with different clinical and laboratory prognostic factors, the 
personalisation of the treatment, the deadly character of the disease, the 
search for escape treatments and the long-term OS as the single important 
primary end-point.  

Also, within the tumour itself, personalised treatment approaches can be 
designed to improve tumour control. The TME of GBM is a very complex 
phenomenon in which cells from different origins meet each other: tumour 
cells from neuro-ectodermal tissue, microglia derived from primitive 
macrophages of the yolk sac and hematopoietic myeloid cells, and different 
inflammatory cells from the hematopoietic system [23]. The relative 
amount of these populations depends on the molecular subtype of GBM 
[119], [132], [133]. The TME is strongly immune-suppressive, based on a 
particular mixture of immunosuppressive stromal elements and cells like 
tumour-associated macrophages, MDSC and Tregs. These stromal elements 
and immunosuppressive cells contribute to the “cold” TME, pointing to the 
fact that there is only a low influx of anticancer immune cells in GBM. The 
presence of cytotoxic effector T cells in the TME has been shown to 
correlate with a good prognosis [134]. Therefore, targeting these negative 
elements in a personalised setting might facilitate immune control. Several 
examples exist in current practice: Tregs are targeted with low dose 
metronomic cyclophosphamide [135] or an anti-IL-2Ra blockade [136], 
MDSC can be targeted with short pulses of high dose all-trans-retinoic-acid 
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[137], [138], [139], Cox2 inhibitors are used to lower prostaglandin 
production [140] and bevacizumab [61] and an antisense oligodeoxynucleotide 
[141] target VEGF and TGF-b, respectively. Here, it needs to be mentioned 
that the administration of ICD-inducing OVs also might have a strong 
impact in improving the transition of TME from “cold” to “hot” [93].  

GBM not only has an immunosuppressive TME but also causes 
systemic immunosuppression [142]. In a recent study, strong correlations 
between immune profiles of circulating lymphocytes prior to and after 
radiochemotherapy versus OS were found when the extent of the resection 
and the DC vaccination schedule were used as stratification variables [143]. 
This indicates that a strong interaction between a given functioning 
systemic immune system and the tumour stage at diagnosis, as well as 
during treatment, determines OS.  

Personalisation at the level of combined treatment strategies 

Till recently, cancer treatment had been mostly expounded in 
predetermined treatment protocols. For GBM, combination approaches like 
surgery followed by radiochemotherapy and maintenance chemotherapy 
were implemented. The addition of novel treatment strategies, exemplified 
by the addition of TTF [81] or immunotherapy [50], [51], [52], [108] to the 
Stupp-based standard treatment, is the focus of research. In the design of 
combination approaches, the working mechanism of the particular 
treatment element, mechanisms causing side effects and the kinetics of the 
effects on the tumour level and the host level should be considered. Two 
examples are illustrated: 1) Treatments that stimulate T cell proliferation in 
combination with TMZ, that kill proliferating T cells, are futile; 2) It is 
known that TMZ reduces PD-L1 expression on primary GBM tumour cells 
[47], and that radiochemotherapy might induce deep lymphodepletion 
[144]. It is not logical to add PD-1 – PD-L1 checkpoint blockers at the start 
of radiochemotherapy because of the loss of target molecules and the loss 
of T cells.  

We believe that the mode of killing cells by the alkylating agent TMZ 
can be combined with ICD provided by NDV injections and mEHT. TMZ 
disrupts the genetic structure of tumour cells and can thereby kill dividing 
tumour cells, while NDV and mEHT can kill all tumour cells, including the 
non-dividing tumour cells and glioma cancer stem cells. Moreover, the 
TME will change, and DCs will be alerted by danger-associated molecular 
patterns. If ICD treatment is scheduled shortly after the 5 days of TMZ 
treatment, there are still about 2 weeks left to allow immune reactivity 
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before the next TMZ course. We now schedule the DC vaccinations after 
TMZ maintenance chemotherapy, so that dividing T cells are not affected 
by TMZ. Although there were arguments to insert DC vaccination 
immediately after radiochemotherapy in former clinical trials for primary 
GBM patients [52], [51], [52], the change to postpone DC vaccination until 
after TMZ maintenance chemotherapy is supported by data from the 
randomised HGG-2010 trial showing a trend to a higher 2-year OS in the 
late (37%, CI 95% = 13) versus the early vaccination arm (31%, CI 95% = 
13%) for both completely resected and less than completely resected 
subgroups of patients [143].  

For the next step, immunomodulatory approaches should be inserted 
into the global combination treatment strategy. One clinical trial for 
relapsed paediatric GBM includes low dose cyclophosphamide to deplete 
Tregs (NCT03879512). Anti-PD-1 monoclonal antibody therapies can be 
implemented in the case of MMR syndromes and a high mutational load of 
tumour cells [111]. We demonstrated the fluctuation of PD-L1 expression 
on circulating cancer cells during immunotherapy [87]. Hence, it can be 
useful to reconsider treatment with checkpoint inhibitors at a later time, 
even if the original tumour was PD-L1 negative. Finally, we implemented 
the use of short pulses of high dose oral All-Trans-Retinoic Acid (ATRA) 
in combination with Acetazolamide diuretics to avoid a headache resulting 
from pseudotumour cerebri. The chief dominant role of MDSC in GBM is 
well known in preclinical and clinical research [145], [146]. The potency 
of short pulses of high dose ATRA to deplete MDSC has been described 
[137], [138], [139].  

The current multimodal treatment strategy, including multimodal 
immunotherapy, was implemented in clinical practice (figure 4), and the 
first cohort of patients treated according to this personalised medicine 
approach has been published [87]. The updated (01/04/2019) OS curve of 
this patient population is shown in figure 5. The 2-year OS is 52% (CI 95% 
= 29). With a median follow up of 22 months (range 10 to 43), the median 
OS had not yet been reached.  
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Figure 4. Current combined treatment strategy for patients with a primary 
diagnosis of GBM. After neurosurgery and radiochemotherapy, an immunodiagnostic 
analysis is performed prior to the first 5-day maintenance chemotherapy. At days 8 
to 12 of each 28-day cycle, injections with Newcastle Disease Virus (NDV) and 
treatments with modulated electro-hyperthermia (mEHT) are included. After the 
maintenance chemotherapy cycles, two vaccination cycles are added. Each of these 
consists of 6 doses of NDV injections, 6 treatments with mEHT and one autologous 
dendritic cell (DC) vaccine injection loaded with autologous tumour antigens. 
Finally, immunomodulatory treatments are initiated. After the DC vaccination 
cycles, maintenance immunotherapy is continued, consisting of mEHT, NDV and 
immunomodulatory treatments.  

 

Figure 5. Overall survival curve of patients with the first diagnosis of a primary 
GBM, treated with Stupp-based treatment combined with multimodal 
immunotherapy. The updated survival (01/04/2019) of a previously published 
series of patients [87] is shown. The two-year OS is 52% (CI 95% = 29). With a 
median follow up of 22 months (range 10 to 43), the median OS was not yet reached.  
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What are the possibilities for combined treatment approaches at the time 
of relapse? Current experiences have been built up to combine lomustine or 
even Procarbazine, CCNU and vincristine (PCV) treatment with ICD 
induction consisting of NDV injections and mEHT. Again, after chemotherapy, 
full multimodal immunotherapy, including NDV injections, mEHT 
treatments, DC vaccines and immunomodulatory strategies are provided.  

Another interesting approach is the combination of perillyl-alcohol 
(POH) intranasal inhalation in combination with multimodal immunotherapy. 
POH is a chemical product with multiple antitumoral activities and is the 
first anticancer treatment for brain tumours using the intranasal route. Its 
effect against malignant glioma has been demonstrated in several clinical 
trials [147], [148], [149], [150], [151]. Because of its local anticancer 
activity within the brain, the systemic immunity is not affected, and hence 
can be stimulated via multimodal immunotherapy in parallel with the POH 
inhalations.  

Personalisation at the level of response to treatment 

Response to treatment, and the eventual adaptation to new treatment 
strategies in case of no response, is a key factor in the determination of the 
ultimate prognosis for an individual patient. Response to treatment can be 
located both at the tumour level and at the level of the immune system. 
TMZ-induced radiosensitisation might induce radionecrosis and inflammatory 
response with an increased leakage of the BBB and, hence, increased 
contrast enhancement at the tumour location. This phenomenon of 
pseudoprogression is well known in literature, and MRI criteria for 
assessing tumour response have changed from the MacDonald [152] to the 
RANO criteria [153], additionally keeping clinical findings and the need 
for treatments in the assessment of response to treatment. It has been 
recognised that an immune attack on the tumour, similarly, can result in 
transient changes in MRI contrast, reflecting pseudoprogression. Therefore, 
adapted iRANO criteria have been released, including work-flows on how 
to deal with each individual patient under such conditions [154]. A whole 
panel of non-invasive diagnostic tests, including advanced MRI, PET, 
liquid biopsy, radiogenomics and radiomics, are now under development 
for predicting and monitoring treatment response in GBM [155].  

The response to the treatment is visible via the immune system as well. 
The previously published results depicted the sometimes-dramatic change 
in immune profiles due to radiochemotherapy [50]. Significantly more data 
should be collected by which to assess to what extent these changes have an 
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influence on the ultimate outcome of the patient [143]. The efficacy of 
active immunisation strategies is usually assessed via immunomonitoring 
tests like Elispot, tetramer staining and FACS analyses, among others, on 
(eventually ex vivo expanded) immune cells. It remains difficult to correlate 
immunomonitoring data with the ultimate outcome of the patient [116]. 
Other tests focus on the relative change of immune cell populations [156] 
or Th1/Th2 shifts [87] during treatment. PanTum tests, which detect TKTL1 
and Apo10 as tumour-related markers via intracellular staining in 
circulating CD14+CD16+ monocytes, have been used to monitor patients 
[157], and first experiences in the context of GBM treatment monitoring 
have been published [87]. Moreover, these tests even seem to reflect ICD 
efficacy day-by-day, and preliminary results have been released [130].  

Anticancer medicine and complementary medicine 

Reviewing all potential treatment strategies, it becomes evident that two 
major treatment axes meet each other at the tumour site in an attempt to 
control tumour growth (figure 6). One axis comprises all direct anticancer 
treatment strategies (surgery, radiotherapy, chemotherapy, targeted 
therapy), with the potential side effect that they can also systemically affect 
the body. The second axis comprises strategies to reposition the body’s own 
defence mechanisms against the tumour by strengthening immune control 
(active specific immunotherapy, facilitated eventually by targeted 
immunotherapies, immunomodulatory strategies, OVs and electromagnetic 
waves). Immunomodulatory strategies have the potential side effect of 
inducing immune-related adverse effects. These two treatment axes can be 
designed to promote each other via the concept of ICD. Both treatment axes 
should start early in the course of the disease (figure 2). The induction of an 
active specific anticancer immunisation with the induction of immune 
memory response allows long-term control over cancer. Besides these 
important treatment axes, a whole area of complementary approaches has 
been developed and is in current clinical use, not only as prescribed by 
medical doctors but also directly purchased and taken by the patients 
themselves. It is beyond the scope of this manuscript to review all these 
complementary medical strategies. It should still be emphasised that all 
these treatments may eventually facilitate the alleviation of the patient’s 
burden, but not result in a cure. Potentially useful complementary 
treatments in the context of GBM might be the metabolic cocktail including 
Atorvastatin, Doxycycline, Mebendazole and Metformin (NCT02201381). 
Melatonin, CBD/THC and low dose naltrexone belong to the 
psychoneuroendocrine-immunotherapy of cancer [158]. The role of the 
ketogenic diet has been demonstrated, at the preclinical level [159], and also 
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in clinical practice [151]. It is less clear whether the whole area of 
repurposing drugs belongs to the complementary medicine or might have 
direct antitumour effects as well [20], [160].  

 

Figure 6. A personalized, integrated combination treatment for patients with 
GBM. Glioblastoma multiforme (GBM) is located within an immune environment, 
and after immunoediting, displays strong immunosuppressive mechanisms (1). 
Upon diagnosis, physicians start anticancer treatments, such as neurosurgery, 
radiochemotherapy and maintenance chemotherapy (2), which might even 
strengthen the imbalance as depicted in (3). With the goal to be more tumour-
selective, anticancer targeted therapies, anti-angiogenesis strategies and chemical 
strategies like perillyl alcohol (POH) inhalations have been developed (4). Novel 
strategies against GBM include biological therapy with oncolytic viruses (OVs), 
electromagnetic tumour-treating field therapy (TTF), and modulated electro-
hyperthermia (mEHT) (5). The immunotherapy approaches the tumour on another 
axis (6). Active immunotherapy aims to stimulate the immune system (7) with the 
goal to act against the antigen-expressing GBM cells (8). OVs, mEHT and TTF 
therapy target the tumour cells, induce immunogenic cell death and further stimulate 
the anticancer immune response (9). Cancer-mediated immunosuppressive effects 
are counteracted by patient-specific immunomodulatory treatments (10). Anticancer 
treatments should be designed in such a way that they can themselves stimulate the 
immune system, via immunogenic cell death mechanisms, and at least not block it 
(11). Alongside the anticancer treatments and the immunotherapy, complementary 
medicine (12) can support the body in the fight against GBM. Examples from four 
widely used categories are shown. Optimal anti-GBM treatment requires a 
personalised approach: 1) at the genetics/epigenetics/transcriptomics/proteomics 
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level; 2) at the level of surface antigens and target structures; 3) at the level of the 
immune reaction and tumour-host interaction; 4) at the level of the appropriate 
combination therapy; 5) at the level of response to treatment. In all aspects, one 
should consider that the tumour, the immune system and the interaction between the 
tumour and the immune system are dynamic processes; they change over time. Thus, 
the personalised approach should also change over time during the course of the 
disease and treatment.  

ATRA: All-trans-retinoic-acid; CPM: cyclophosphamide 

Summary 

In this manuscript, we set out a personalised treatment approach for 
patients with GBM. We pointed out several important treatment concepts: 

1. GBMs are heterogeneous tumours, which change dynamically over 
time; the host and the tumour-host interactions also change 
dynamically over time. 

2. A combination of different anticancer treatment strategies is needed 
to control GBM on two different axes: a direct anticancer axis and 
an immune stimulation axis. 

3. Both the anticancer treatments and the immunotherapies should start 
together, in well-designed combinations, early during the course of 
the disease. 

4. IO-VAC® is the first approved advanced therapy anticancer vaccine 
medicinal product that includes contemporary personalised tumour 
antigen profiles, together with NDV antigens, and has a high potency 
to stimulate T cells against both tumour antigen-expressing and/or 
NDV-infected tumour cells.  

 
This general concept can be applied to other types of solid tumours. It 

is now a major challenge to implement it in the current static double-blind, 
placebo-controlled, randomised clinical trial design structures and to 
demonstrate superiority for patients in terms of overall survival, quality of 
life and health economics.  
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